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Uncertainty of the noise sampling process 

Owen Duffy 

Abstract 

This article examines the uncertainty of the process of sampling noise for measurement, and a method for prediction of 

sampling uncertainty. The proposed solution has application generally to high resolution measurement of bandwidth 

limited noise. 

1. Characteristics of noise 

Broadband noise is caused by a random process that 

generates a voltage that varies randomly over time. 

The noise voltage is a normally distributed random 

variable. 

Sampling is the process of converting a signal (for 

example, a function of continuous time or space) into a 

regular numeric sequence (a function of discrete time or 

space). 

The noise voltage can be sampled, and the instantaneous 

power is proportional to the square of the sample value. 

The average noise power can be estimated by averaging 

the instantaneous power at regular intervals over a period 

of time. �� �
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 where Pe is the estimated noise power 

in a resistor, vi are the voltage samples, n is the number 

of samples and R is the load resistance. 

It is important to remember that the measurement process 

is only an estimate of the true noise power, and that 

successive sample sets are likely to produce similar, but 

different estimates. 

An explanation about the probability distribution of this 

sampling process can be obtained from classic statistics. 

Statistically, the noise voltage samples are normally 

distributed, have a mean of zero, and some variance. The 

RMS voltage is equal to the square root of the variance. 

If xi samples of an independent normally distributed 

random variable with mean 0 and variance 1, then the 

random variable � � 
��� is distributed according to the 

chi-square distribution. This is usually written as �~χ��  

The expression for Pe can be rewritten as �� �
�	


�
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where vi' is the normalised sample voltage such that its 

variance is 1, or ��
� � 
������, and we can say that 

��
�~χ�� (for k=n-1). 

2. Uncertainty 

Since ��
�~χ�
, the critical points of the chi-square 

distribution can be used to find confidence limits for noise 

measurements based on an effective sample size. 

 

Figure 1: Probability that measurement exceeds normalised 

power. 

Remembering that the measurement process is only an 

estimate of the true noise power, and that successive 

sample sets are likely to produce similar, but different 

estimates. Figure 1 shows the probability that a 

measurement exceeds a given normalised power level for 

measurements based on 10,000 and 20,000 samples. The 

curves tell us that 90% of measurements based on 20,000 

samples will indicate more than 0.987W (normalised 

power). Similarly, 10% of measurements based on 20,000 

samples will indicate more than 1.013W, and so 90%-

10% or 80% of measurements will be between 0.987W 

and 1.013W of the correct power. We can state that the 

sampling uncertainty is ±1.3% to a confidence level of 

80%. 



 

Copyright: Owen Duffy 28/06/2007 2 of 4 v1.03 12/03/2016 

 

Figure 2: Probability that measurement exceeds normalised 

power. 

Looking at Figure 2 which shows the probability that a 

measurement exceeds a given normalised power level for 

measurements based on 10,000 and 20,000 samples. The 

curves tell us that 90% of measurements based on 20,000 

samples will indicate more than -0.06dB (normalised 

power). Similarly, 10% of measurements based on 20,000 

samples will indicate more than 0.06dB, and so 90%-10% 

or 80% of measurements will be between -0.06dB and 

0.06dB of the correct power. We can state that the 

sampling uncertainty is ±0.06dB to a confidence level of 

80%. 

 

Figure 3: Probability that measurement exceeds normalised 

power. 

Figure 3 expands part of Figure 2. Looking at the curves, 

the 97.5% confidence limit for 20k samples is -0.086dB, 

and for 10k samples is -0.12dB. These results are 

summarised in Table 1. 

Table 1 

Sample set size  Sampling uncertainty (dB) 

10k  ±0.120 

20k  ±0.086 

 

Increasing sample set size reduces sampling uncertainty. 

3. Effective sample set size 

The Nyquist–Shannon sampling theorem states that exact 

reconstruction of a continuous-time baseband signal from 

its samples is possible if the signal is bandlimited and the 

sampling frequency is greater than twice the signal 

bandwidth. 

This implies that a sample set with sampling frequency 

higher than twice the highest frequency, the Nyquist Rate, 

contains no more information than one with sampling 

frequency equal to the Nyquist Rate. 

Further, that translation of a limited bandwidth noise to 

another frequency range does not change the noise power 

(mean and variance) of the signal, and that provided that 

the sampling rate is greater than the Nyquist Rate (so as 

to prevent aliasing), that the sample set contains no more 

information than one with sampling frequency equal to 

twice the bandwidth. 

Applying this to measurement of noise: 

• a digital process to sample a bandlimited noise 

waveform must sample the waveform at a rate higher 

than twice the highest frequency; and 

• the effective sample rate for determining the 

distribution of measured power is twice the 

bandwidth. 

The effective sample set size is 

Bandwidth*IntegrationTime/2 provided that the sample 

rate is at least twice the highest frequency. 

 

Figure 4: Noise sampling uncertainty. 

Figure 4 shows the expected sampling uncertainty against 

the Bandwidth*IntegrationTime product. This indicates 

that if you wanted to reduce sampling uncertainty to 

0.1dB at a 95% confidence level, you need a 

Bandwidth*IntegrationTime product of greater than 

7,400. With a 2kHz wide receiver, and IntegrationTime 

of 7400/2000 or 3.7s would be required. 
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A handy online Noise Measurement Uncertainty 

Calculator is at http://owenduffy.net/calc/nmuc.htm. 

4. Experimental results 

An experiment was conducted to compare the spread of a 

series of measurements with predictions. Groups of 30 

measurements were made of a receiver with effective 

noise bandwidth of 1500Hz (250Hz to 1750Hz) and with 

IntegrationTime of 0.15s, 1.5s, and 15s. 

 

Figure 5: Experimental measurements. 

 

Figure 6: Experimental results. 

Figure 6 shows the distribution of the measurements in 

each of the three groups. 

Table 2 

Integration 

Time (s)  

Measurements  Predicted 

sampling 

uncertainty 

(dB)  

Actual 

95% 

interval 

(dB) 

0.15  30  ±0.578  ±0.572 

1.5  30  ±0.183  ±0.146 

15  30  ±0.058  ±0.040 

 

Table 2 shows the predicted and experimental results. 

Table 3 

Integration 

Time (s)  

Measurements  Predicted 

sampling 

uncertainty 

(dB)  

Actual 

95% 

interval 

(dB) 

0.15  997  ±0.578  ±0.570 

 

Table 3 shows the predicted and experimental results 

from a larger test. 

5. Agilent PN 85719A-1 

A relevant product note by Agilent has come to hand. PN 

85719A-1 entitled "Maximizing Accuracy in Noise 

Figure Measurements" gives an expression for 

calculating the expected variation in noise measurements: 

������������� � 10 log�1 % 3�� ∙ �(�)*.,�	for	t 11
BW. 

The expression is held to be good for t>>BW, but what 

does that mean exactly? 

 

Figure 7: Comparison of Chi-square estimate and Agilent's 

estimate. 

Figure 7 is a comparison of the chi-square estimate at 

confidence level 99.73% (equivalent to Normal 

distribution 3σ limits) with Agilent's expression. The 

difference is less than 0.01dB for t*BW>2700. Agilent's 

expression would appear to be an approximation of the 

chi-square estimate, and is reasonably accurate for t*BW 

greater than about 2000. 

Agilent's approach may be based on a Normal 

approximation of χ�� for large k, but it appears to be a 

poor estimate for smaller k. 

6. Normal approximation 

As 4 → ∞,
89	:)�;

√��

=
→>�0,1�, so for very large k (t*BW), 

greater than say 2,000, the normal approximation may 

provide an adequate approximation. It can be seen from 

Figure 4 that for 2σ uncertainty expectation due to 
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sampling alone below 0.25dB, the more exact chi-square 

calculation is better. 

7. Glossary 

Term  Meaning 

Aliasing  Distortion caused when the sample 

rate of a function (fs) is less than 

twice the highest frequency value 

of the input waveform or function. 

The frequencies above (fs/2) will 

be folded back into the lower 

frequencies. 

Baseband  signals that contain a band of 

frequencies from zero and have a 

bandwidth of highest signal 

frequency. 

dB  decibel - power ratio 

dBm  decibels - power wrt 1 mW 

Nyquist 

frequency  

Half the sampling frequency of a 

discrete signal processing system 

(fs/2) 

Nyquist Rate  The minimum sampling rate 

required to avoid aliasing, equal to 

twice the highest frequency 

contained within the signal (fs) 

8. Links 

Noise Measurement Uncertainty Calculator 

http://owenduffy.net/calc/nmuc.htm. 

FSM (Field Strength Meter) software 

http://owenduffy.net/software/fsm/index.htm. 

NFM (Noise Figure Meter) software 

http://owenduffy.net/software/nfm/index.htm. 

9. Changes 

Version  Date  Description 

1.01  28/06/2007  Initial. 

1.02  24/03/2009  Added Agilent 

update. 

1.03  12/03/2016 Converted to 

Word, URL 

updates. 

 

 


