
PIK - PIC Iambic Keyer

PIC Iambic Keyer (PIK)
This article describes the design and implementation of a simple semi automatic electronic
morse code keyer.

The keyer assists the formation of correctly times Morse signals by automating the timing of the
duration of the dit and dah elements and the rest period between the dits and dahs, and
optionally, between individual characters. The keyer also allows automatic generation of
successive dits, successive dahs, and alternating dits and dahs or dahs and dits without keying
each individual element.

Design criteria
Implementation
Algorithm
Prototype
Sourcing parts

Design criteria
Key design criteria were:

1. simple in operation;
2. basic functions;
3. simple in construction and adjustment;
4. low power requirements;
5. open collector output to key a modern solid state transceiver than requires the keyer to

sink a current of the order of mA to earth, and a maximum open circuit keying voltage of
less than 24V DC;

6. accommodate a hand key concurrently with the paddle;
7. integrated Tune switch;
8. operate from a nominal 12V DC, -ve ground supply.

The functions that would be supported were:

automatic timing of duration of dits;
automatic timing of duration of dahs;
automatic timing of duration of rest period after a dit or dah;
optionally, automatic timing of duration of inter-character rest period (referred to in this
article as Automatic Spacing or Auto-space).

Functions that would not be supported included:

grid block, or high voltage keying;
side tone oscillator;
bias adjustment;
non standard Morse timing (weight, long dashes, long inter-character time);
any kind of repertory memory feature.

This keyer will not suite grid block keying, any kind of valve cathode keying, any kind of high
voltage keying without modification. It would be possible to use the keyer to key a suitable reed
relay which in turn keyed one of these types of transmitter systems.

The implementation does not include a side tone oscillator, most (all) transceivers have a side
tone function and it sounds better than a shabby implementation in a keyer, although I
concede that a side tone oscillator in the keyer is handy for practice. You could add a small
oscillator and speaker or phone jack yourself.

http://www.vk1od.net/pik/pik.htm (1 of 7) [17/10/04 9:03:23]

PIK - PIC Iambic Keyer

The right place to fix a bias problem if you have one is in the transmitter, not in the keyer, there
shouldn't be a need for bias adjustment in the keyer.

Non standard Morse timing is not enhanced Morse, it is just a barrier to effective
communication. If you want to "Swing", use a hand key.

I don't doubt that a repertory memory in a keyer may be handy, but nothing competes with a
keyboard and screen if you want to have boilerplate stored and develop "macros", you have
the power to implement an integrated decoder, and gee you could even create automated
responses so you don't even need to be there!

Implementation
One could approach the implementation a number of ways, including:

1. hardwired logic using gate and flip flop packages;
2. programmable logic array (PLA); and
3. microcontroller (MCU).

There is nothing novel about 1, it has been done before and there are so many designs in
existence. The disadvantage is the number of chip packages and the amount of wiring favours
a printed circuit board for implementation. This approach fails design criterion #1.

Implementation with a programmable logic array is relatively novel, but a gross overkill,
expensive, and creates some construction difficulty with the package for the PLA. This approach
fails design criterion #3.

An MCU implementation could again be an overkill, depending on the choice of MCU. The
amount of software to implement a basic function set is quite small, the instruction path lengths
are short, and only 3 or 4 I/O pins are required so a very modest MCU will be more than
capable.

Figure 1: Schematic diagram

http://www.vk1od.net/pik/pik.htm (2 of 7) [17/10/04 9:03:23]

PIK - PIC Iambic Keyer

I have chosen a Microchip PIC12C508A, which is available in low cost plastic DIP8 package for
through hole or socket mounting, has enough I/O pins, more than enough program memory
and data memory, and plenty of CPU power for the job. The only downside of the 12C508A is
that it is an OTP (one time programmable) which is one of the reasons why it is so cheap. An
alternative would be a flash PIC chip like the 16F84, but since the software is so simple and
should be stable, the added cost for the erase / reprogram capability is of little value once the
development is done.

The design uses 1mA to 4mA at 5V, depending on speed and traffic. The zener regulator shown
in the circuit will cause consumption of 10mA at 13.8V, it may be possible to reduce this by a few
mA using a 78L05 regulator (although they can be a little hard to get). The VDD supply should
not exceed 5V, but should run satisfactorily on 4.5V or 3V from series dry cells (although the
speed range may change a little).

The chip provides two outputs, TX which goes to 5V for key down condition, and ~TX which is its
inversion. These chip output pins are not open collector, do not short them to 0V for 5V (for
example by putting a key or switch in parallel with the outputs). They are both provided for
convenience for integration in a transmitter / transceiver.

The components are chosen to support a speed range of at least 10wpm to 40wpm. Based on a
dit element duration of 122mS at 10wpm, the software is calibrated so that the oscillator runs at
10KHz. With the components shown, the prototype ranged from 6wpm to 50wpm (see Detailed
derivation of Timing).

To maintain control of the software, the intention is to release programmed MCUs rather than
distribute the software. To a proficient programmer, development of the software is a trivial task
anyway - an interesting exercise. The programmed MCUs have the Code Protect feature
enabled, and so should not be possible to copy the code. Don't ask for the source code or the
hex code, it is not available at this time. (PS: hex code now available on line).

The schematic is shown in Figure 1. The circuit schematic is also available in Acrobat format
here.

Software
The MCU operates in the External RC Clock mode, clock frequency is set by VR1, R6 and C3. The
clock runs at 10KHz for 10 wpm nominal speed, and should produce a dit element duration of
122 mS, or a repeating dit frequency of 4.1 Hz. Clock speed is sensitive to VDD, and range
calibration will change if you try to run the chip at 2V. Clock speed is a compromise between
timing granularity and risk of RFI. With the choice of 10KHz at 10wpm , the basic cycle time of the
MCU is 0.4mS, which provides timing granularity of 0.4mS for a dit interval of 122ms, which is a
granularity (timing resolution accuracy) of under 0.5%.

Timing of all elements (dits, dahs, rests and inter-character space) is derived from the single
oscillator, is fixed requiring no alignment or adjustment, and is quite accurate.

Algorithm
This section applies to V1.13. The algorithm in V1.12 is identical apart from the sleep.

For the technically minded, the following is a brief description of the algorithm:

Main loop

1. On startup, the software initialises;
2. It scans both paddles, latching closed contact conditions;

http://www.vk1od.net/pik/pik.htm (3 of 7) [17/10/04 9:03:23]

http://www.vk1od.net/pik/pik001.pdf

PIK - PIC Iambic Keyer

3. Based on the condition of the paddle latches, the type of the last element sent, and
whether autospace is enabled, it will commence sending a dit, dah, execute an
autospace wait, or go to sleep (if both paddles are closed within the same scan cycle,
the keyer will process the dit first);

Sending a dit or dah:

1. Immediately it goes key down, it clears the paddle latches;
2. During the key down period and the subsequent rest period, it scans the opposite paddle

type (every 2mS at 10WPM) and latches closed contact condition;
3. On completion of the rest period, it goes back to Step 2 of the Main loop.

Executing autospace wait:

1. The paddle latches are cleared;
2. A wait is executed (of duration twice the rest period);
3. On completion of the wait period, it goes back to Step 2 of the Main loop.

Sleeping:

1. The processor is shutdown. A closure or a paddle or autospace switch will cause the
processor to wake-up and execute Step 1 of the Main loop.

Except for Iambic sequences, one must have the paddle closed at the time one wants an
element to be initiated, and one must release the paddle anytime until the completion of the
rest period to avoid sending another of that element type. This is true even when autospace
forces an inter-character idle.

If while sending a dit (key down or rest period), one closes the dah paddle, a request for that
dah be queued. One must release the dah paddle anytime until the completion of the rest
period for the dah to avoid sending or queuing another dah. The converse also applies.

This is I believe referred to as Iambic Mode B operation, whereas Iambic Mode A would not
queue the dah during the dit time, the dah paddle would have to be closed at the completion
of the rest period following the dit to initiate the following dah. A Mode A keyer is short one of
the features of a Mode B keyer. To my mind, an operator who exploits the capability of a Mode
B keyer will notice the lack of iambic queuing in a Mode A keyer, whereas an operator
accustomed to Mode A keyer will probably not notice any difference using a Mode B keyer.

If autospace is enabled, and neither paddle contact is closed at the completion of a rest
period, the keyer will start a wait interval of a further two rest periods (during which it scans and
latches the paddles), thereby forcing a standard inter character space.

I experimented with a range of schemes for the interval when the paddle latches were active,
and when they were reset, monitoring error rates keying slow and fast, fresh and fatigued. This
scheme above seemed most tolerant of my keying. On later checking, I think that the algorithm
described above is identical to the operation of the once popular WB4VVF Accu-Keyer, though
the timing is more accurate than the Accu-Keyer. Perhaps that is in part due to my training on
an Accu-Keyer some twenty years ago!

Prototype
Fig 2: Prototype constructed on Veroboard

http://www.vk1od.net/pik/pik.htm (4 of 7) [17/10/04 9:03:23]

PIK - PIC Iambic Keyer

Fig 2 shows the prototype built on a piece of Veroboard 25mm x 42mm. The MCU is socketed so
that the chip could be changed easily. All electronic components beside the pot are on the
Veroboard, 15 parts in all 4 of which are for the regulated power supply.

Figure 3: Example veroboard track layout

Figure 3 shows an example veroboard layout. The view is of the component side. The blue
(horizontal) tracks are the veroboard tracks as used, the red tracks (vertical) are jumpers. Note
that the tracks are cut between holes in some instances. Also note that the three jumpers are
under the IC or its socket, they need to be installed first. This board layout does not include
provision for mounting, you may need to provide additional space for the mounting system that
you intend to apply, you could cut it overall to fit the slots of a jiffy box, or leave an extra 3 strips
on one side and drill it to fit on threaded pillars. (Note that with subsequent revisions, the ~TX line
is gone, and the ~AS pin is now AS). The Dit and Dah lines are actually ~Dit and ~DAH.

Figure 4: PIK output timing

Figure 4 is a time domain display of a practice oscillator keyed by the PIK with the PIK oscillator

http://www.vk1od.net/pik/pik.htm (5 of 7) [17/10/04 9:03:23]

PIK - PIC Iambic Keyer

running at 10KHz, sending the characters AE with Auto-space enabled.

The oscillator output was recorded digitally and the duration of the tone bursts and intervals
were measured with resolution better than 1mS. The duration of the tone bursts and silent
intervals are 122mS, 122mS, 366mS, 366mS and 122mS. The last dit was delayed by the Auto-
space, the 366mmS interval is a test of the Auto-space timing.

This keyer does not suffer any irregular timing of any elements as is evidenced in some other
keyer designs, especially those that start the clock oscillator after an idle period and suffer
irregular timing on the first cycle.

All significant timings and latencies are a function of the clock frequency which is adjusted for
sending speed. The accuracy of the timing in relative terms should be equally good at all
(practical) operating speeds. I looks just as good at 60wpm where the tone burst may be only 12
cycles of the side-tone oscillator.

Sourcing parts
All the parts should be easily obtained, or easily substituted. The 12C508A MCU is used widely as
the basis for the so-called Playstation mod-chips and shouldn't be too hard to find. (I expect the
firmware should work fine in a 12C508A, 12C509A, 12CE518 and 12CE519, but operation has
been tested only in the 12C508A and 12CE519, and it may work on other 12Cxxx family chips.)

Programmed MCU chips may be available from the author for about A$10 including postage
within Australia. Please contact me to ensure that stock is available.

Switches, pot, jacks and a case will comprise most of the other costs, the whole thing should be
less than A$30 for switches, pot, jacks, case, MCU, and the other parts.

V 1.11 (20/12/01)
Version 1.11 firmware was modified to reduce idle current consumption for battery operation. It
did that in two ways, one is entering a sleep mode where the processor shuts down when idle
(between characters sometimes), and changing the sense of the Autospace switch (switch
open is Auto ON).

V 1.12 (03/03/02)
The sleep feature introduced in version 1.11 firmware has a problem that occurs rarely and is
difficult to replicate, and has been removed from V1.12. All V1.11 chips were replaced and
have been destroyed.

V 1.13 (29/03/03)
It turns out that the problem with V1.11 was with ringing of the paddle inputs at the instant that
the MCU was entering sleep. The fix is to increase the values of C1 and C2 to 0.1uF.

Version 1.13 firmware reduces idle current consumption for battery operation. It achieves that by
entering a sleep mode where the processor shuts down when idle (between characters if
Autospace is off). Because the MCU reinitialises during normal operation, the ~TX line has been
removed due to the very short glitch on that line during MCU initialisation.

When idle (sleeping) and Autospace ON, the prototype keyer (exclusive of the regulator) draws
1.5uA on a 5V supply, and when keying, current rises to 1.5mA. It is practical to run this version on
3 x AA alkaline cells (~3000mAh), battery life on idle would be limited by internal battery

http://www.vk1od.net/pik/pik.htm (6 of 7) [17/10/04 9:03:23]

PIK - PIC Iambic Keyer

leakage.

Table 1: Estimated battery life

Battery Capacity
(mAh)

Battery life (hours)

Idle (1.5uA) Keying (1.5mA)

3 x MN1500 (AA) 3000 2,000,000 2000

3 x MS76 (silver oxide button cell) 180 120,000 120

V 1.13 (17/04/04)
Code is identical to V1.13. Released under GPL. Download.

Last update: 16 October 2004 17:00

VK1OD on the 'net, your feedback is welcome.

© Copyright: Owen Duffy 1995, 2004. All rights reserved.

http://www.vk1od.net/pik/pik.htm (7 of 7) [17/10/04 9:03:23]

http://www.vk1od.net/pik/pik-1.14.zip
http://www.vk1od.net/
http://www.vk1od.net/feedback.htm

http://www.vk1od.net/pik/timing.htm

Derivation of the relationship
between clock speed, internal
timers and WPM equivalent speed
The following is a table of frequency of occurrence of the alphabet in plain English
text taken from a cryptanalysis text, and the length of Morse Code encoding of those
characters.

Letter
Frequency
(%)

Elements Contribution

 E 0.1300 4 0.520

 T 0.0920 6 0.552

 N 0.0790 8 0.632

 R 0.0760 10 0.760

 O 0.0750 14 1.050

 A 0.0740 8 0.592

 I 0.0740 6 0.444

 S 0.0610 8 0.488

 D 0.0420 10 0.420

 L 0.0360 12 0.432

 H 0.0340 10 0.340

 C 0.0310 14 0.434

 F 0.0280 12 0.336

 P 0.0270 14 0.378

 U 0.0260 10 0.260

 M 0.0250 10 0.250

 Y 0.0190 16 0.304

 G 0.0160 12 0.192

 W 0.0160 12 0.192

 V 0.0150 12 0.180

 B 0.0100 12 0.120

http://www.vk1od.net/pik/timing.htm (1 of 2) [17/10/04 9:04:36]

http://www.vk1od.net/pik/timing.htm

 X 0.0050 14 0.070

 Q 0.0030 16 0.048

 K 0.0030 12 0.036

 J 0.0020 16 0.032

 Z 0.0010 14 0.014

Total 1.00000 9.076

Average word duration will be 5 * 9.076 + 4 or 49.38

This represents 60/49.38/10 S (122mS rounded to the mS) per dit interval (Baud) at
10WPM. With that figure, the WPM speed is 2.44 times the dit frequency

I note that an older ARRL handbook suggests for electronic keyers that the WPM
speed is 2.4 times the dit frequency, but it does not provide the derivation. This is
about 1.6% lower than the above derivation.

VK1OD on the 'net, your feedback is welcome.

© Copyright: Owen Duffy 1995, 2004. All rights reserved.

http://www.vk1od.net/pik/timing.htm (2 of 2) [17/10/04 9:04:36]

http://www.vk1od.net/
http://www.vk1od.net/feedback.htm

	vk1od.net
	PIK - PIC Iambic Keyer

	pik-1.14.pdf
	vk1od.net
	http://www.vk1od.net/pik/timing.htm

